Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Магнитные цепи

Электрический ток связан с магнитным полем. Основными величинами, характеризующими магнитное поле, являются: магнитный поток, магнитная индукция и напряженность магнитного поля.
В качестве силовой характеристики магнитного поля вводится векторная величина В, называемая индукцией магнитного поля или просто индукцией. Модуль вектора индукции магнитного поля равен отношению магнитной силы F, направленной вдоль радиуса-вектора, соединяющего точечные заряды, к произведению заряда Q на его скорость v при условии, что заряд движется перпендикулярно вектору индукции:

B=F/(Qv)

 

Единицу индукции магнитного поля называют тесла (Тл): 1 Тл — это индукция поля, которое действует на заряд 1 Кл, движущийся со скоростью 1 м/с перпендикулярно вектору индукции, с поперечной силой 1 Н.
Напряженностью Н магнитного поля называют величину:

Единицей напряженности магнитного поля служит ампер на метр (А/м).

Другой важной характеристикой магнитного поля является величина, называемая магнитным потоком:

Ф=ВS

Единицу магнитного потока называют вебер (Вб): 1 Вб — магнитный поток, пронизывающий поверхность площадью 1 метр кв., расположенную перпендикулярно силовым линиям однородного магнитного поля с индукцией 1 Тл.
Напряженность магнитного поля связана с магнитной индукцией соотношением


 

Магнитная проницаемость вещества
Относительная магнитная проницаемость
Магнитная проницаемость в вакууме

Магнитная проницаемость — безразмерная величина. Таким образом, каждое данное вещество может характеризоваться присущей ему магнитной проницаемостью, так же как диэлектрик — диэлектрической проницаемостью.
Все тела, помещаемые в магнитное поле, изменяют его индукцию.

В 50-х годах прошлого столетия Фарадей обнаружил, что все тела обладают магнитными свойствами, но степень и характер их взаимодействия с полем у различных веществ различны. В связи с этим различают вещества с парамагнитными, диамагнитными и ферромагнитными свойствами.

  • диамагнетики (висмут, вода, водород, медь, стекло);
  • парамагнетики (кислород, платина, вольфрам, алюминий);
  • ферромагнетики (железо, кобальт, чугун, никель).

У диамагнетиков, как и у парамагнетиков, зависимость В(Н) (кривая намагничивания) является линейной, отличие только в угле наклона графика.

Кривая намагничивания показывает связь между магнитной индукцией и напряженностью магнитного поля. У ферромагнетиков эта связь существенно нелинейная.
Индукция поля в намагниченном ферромагнетике сначала быстро нарастает с ростом напряженности внешнего магнитного поля. Затем рост индукции поля замедляется.
В стали потери на перемагничивание пропорциональны площади, ограниченной кривой намагничивания. Материалы с большой площадью кривой намагничивания называются магнитотвердыми, с малой площадью кривой намагничивания — магнитомягкими, например, электротехническая сталь.
Важное отличие ферромагнетиков также заключается в том, что если пара- или диамагнитные свойства вещества проявляются у газов и жидкостей, то ферромагнитные свойства наблюдают только у кристаллов.

Характерным свойством ферромагнетиков является гистерезис. Явление заключается в том, что индукция ферромагнетика В зависит не только от напряженности намагничивающего поля в данный момент, но и от предварительного намагничивания образца. Поэтому вообще нельзя указать, какая индукция ферромагнетика соответствует данному значению напряженности намагничивающего поля, если неизвестно, в каком состоянии он до этого находился. То же, естественно, относится к значениям магнитной проницаемости.
Участок ОС кривой на графике характеризует ход первоначальной намагниченности, т. е. случая, когда ферромагнетик был сначала нагрет выше точки Кюри и тем самым полностью размагничен, а затем охлажден и подвергнут намагничиванию. Совершенно иной вид будет иметь кривая намагничения, если ферромагнетик был уже ранее намагничен.
Изготовим сердечник в форме тороида из размагниченного ферромагнетика и обмотаем его равномерно проводником. Меняя силу тока в обмотке, мы тем самым меняем напряженность намагничивающего поля. Пусть напряженность поля возрастет до значения
Hs. Этому значению поля соответствует индукция насыщения, равная Bs. Будем уменьшать силу тока в обмотке, уменьшая тем самым напряженность намагничивающего поля. Мы убедимся, что индукция сердечника в процессе размагничивания остается все время большей, чем в процессе намагничивания.
Когда сила тока в обмотке станет равной нулю, исчезнет и намагничивающее поле. Но индукция ферромагнетика не обратится в нуль — сердечник сохранит некоторую остаточную индукцию В
r. И только в том случае, когда по обмотке будет пропущен ток обратного направления и возникнет поле с напряженностью — Нc, индукция сердечника обратится в нуль. Напряженность размагничивающего поля Нc называют коэрцитивной силой.
Если увеличивать в обмотке силу тока обратного направления, то индукция магнитного поля в сердечнике будет возрастать тоже в противоположном направлении до насыщения. Далее, при уменьшении силы тока процесс размагничивания повторится. Кривую, описывающую этот процесс, называют
петлей гистерезиса.
Магнитной цепью называется часть электротехнического устройства, предназначенная для создания в его рабочем объеме магнитного поля заданной величины и конфигурации.
Магнитная цепь электрических реле, трансформаторов, электрических машин состоит из источников, возбуждающих магнитное поле, и магнитопровода, в котором магнитный поток концентрируется и практически весь замыкается.
При расчете магнитной цепи может быть поставлена задача определения намагничивающей силы (н.с.) при заданном магнитном потоке или индукции — это прямая задача. Обратная задача — определить магнитный поток по намагничивающей силе.
В обеих задачах должны быть известны размеры участков магнитной цепи и кривая намагничивания материала.

Расчет магнитной цепи производится на основании первого закона Кирхгофа, по которому алгебраическая сумма магнитных потоков в узле магнитной цепи равна 0:


 

и второго закона Кирхгофа для магнитной цепи или закона полного тока

Циркуляция вектора напряженности магнитного поля Н по замкнутому контуру равна алгебраической сумме токов, охватываемых этим контуром.
Если контур интегрирования охватывает
W витков, то
— намагничивающая сила или магнитодвижущая сила (МДС), измеряется в ампер-витках (ав).


 

В общем случае


 

Закон Ома для участка магнитной цепи длиной и площадью S. При напряжении между концами участка связь между напряженностью магнитного поля Н и индукцией В выражается формулой:


 

В этом выражении Ф аналогичен току электрической цепи, а магнитное напряжение — электрическому напряжению.
Тогда магнитное сопротивление


 

Магнитное сопротивление определяется воздушным зазором. При наличии воздушного зазора для создания соответствующей индукции требуется большой ток. При отсутствии воздушного зазора для создания соответствующей индукции требуется небольшой ток.
Нелинейность кривой намагничивания обусловливает нелинейность индуктивного сопротивления катушки на магнитном сердечнике.
Катушки индуктивности на ферромагнитном магнитопроводе считаются нелинейными элементами как в цепи постоянного тока, так и при синусоидальном напряжении.

Феррорезонанс

Для электрических цепей с нелинейным индуктивным и линейным емкостным сопротивлениями характерны явления феррорезонанса. При последовательном соединении различают феррорезонанс напряжений, а при параллельном — феррорезонанс токов.
Вольт-амперные характеристики электрической цепи при последовательном (a) и параллельном (б) соединениях

Скачкообразное изменение величины тока и его фазы при последовательном включении рассматриваемых элементов и скачкообразное изменение величины напряжения при параллельном включении являются одной из особенностей таких цепей. Релейные свойства феррорезонансных цепей используются в устройствах автоматики.
Схема последовательного соединения может быть использована в качестве стабилизатора напряжения.
Для изменения индуктивного сопротивления катушки с ферромагнитным сердечником используют подмагничивание сердечника дополнительной катушкой, питаемой постоянным током. В этом случае она называется дросселем насыщения и используется для регулирования скорости вращения двигателей, регулирования освещения, а также в выпрямительных установках с регулируемым напряжением.