Перейти к содержанию

Главное меню:

Территория электротехнической информации WEBSOR

Найти

Пробой диэлектриков

Основы > Электротехнические материалы > Диэлектрики

Пробой диэлектриков

При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя.
Величину напряжения, при котором происходит пробой диэлектрика, называют
пробивным напряжением , а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика .
Для равномерного электрического поля электрическая прочность (пробивная напряженность) диэлектрика определяется по формуле



где d - толщина диэлектрика в месте пробоя, м.
Пробой газообразных диэлектриков см. раздел.
Пробой жидких диэлектриков - явление сложное, что объясняется сложным составом жидких диэлектриков и сильным влиянием загрязнений на развитие пробоя. На рис. 5-13 показана зависимость изменения электрической прочности трансформаторного масла от содержания влаги. Наиболее резкое снижение электрической прочности жидких диэлектриков вызывает эмульсионная вода. С повышением температуры эмульсионная вода переходит в растворенную; при этом жидкий диэлектрик становится более однородным и электрическая прочность его повышается.
Другие загрязнения (волокна, смолистые вещества и др.) подобно воде понижают электрическую прочность жидких диэлектриков.
Чистота поверхности электродов оказывает существенное влияние на электрическую прочность жидких диэлектриков.
Большая продолжительность воздействия электрического поля на жидкий диэлектрик вызывает резкое снижение пробивного напряжения (рис. 5-14).
Конфигурация электрического поля и полярность электродов также вызывают изменение пробивных характеристик жидких диэлектриков (рис. 5-15 и 5-16).
Пробивное напряжение жидких диэлектриков повышается с увеличением давления (рис. 5-17). Зависимость пробивного напряжения от давления заметно уменьшается с повышением степени очистки электроизоляционных жидкостей, что указывает на большое влияние газообразных примесей.
При импульсных воздействиях напряжения на слой жидкого диэлектрика зависимости пробивного напряжения от давления практически не наблюдается. С увеличением плотности жидкого диэлектрика его электрическая прочность линейно возрастает.
Влияние температуры на пробивные характеристики жидких диэлектриков различно в зависимости от их химического состава и степени загрязнения примесями. Заметные изменения электрической прочности с температурой наблюдаются у электроизоляционных жидкостей сложного химического состава, особенно при наличии в них загрязнений (влага, газы и др.). По мере приближения к температуре кипения электрическая прочность жидких диэлектриков резко понижается.
Наибольший практический интерес представляют теории, посвященные процессам пробоя технических электроизоляционных жидкостей. В большинстве этих теорий (авторы Н. Н. Семенов и А. Ф. Вальтер, Эдлер и др.) пробой жидких диэлектриков рассматривается как тепловой процесс, в результате которого в слое жидкого диэлектрика образуются газовые или паровые каналы. Паровая и газовая фазы в жидком диэлектрике возникают при нагреве его токами проводимости, повышенные значения которых наблюдаются в наиболее загрязненных частях диэлектрика. При критических значениях напряженности электрического поля в газовых и паровых каналах начинает развиваться процесс ударной ионизации газа, завершающийся пробоем.
Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока, подобно тому как это наблюдается в процессе ударной ионизации в газообразных диэлектриках.

Характерными признаками электрического пробоя твердых диэлектриков являются:
1. Независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения (до с).
2. Электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин см).
3. Электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: В/см; причем она больше, чем при тепловой форме пробоя.
4. Перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока.
5. При наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект).

Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Процесс теплового пробоя твердого диэлектрика состоит в следующем. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщину диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительные количества тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине - по ослабленному месту.

Характерными признаками теплового пробоя твердых диэлектриков являются:
1. Пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду.
2. Пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды (рис. 5-18).
3. Пробивное напряжение снижается с увеличением длительности приложенного напряжения (рис. 5-19).
4. Электрическая прочность уменьшается с увеличением толщины диэлектрика.
5. Электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения.
При пробое твердых диэлектриков часто наблюдаются случаи, когда до определенной температуры имеет место электрический пробой, а затем в связи с дополнительным нагревом диэлектрика наступает процесс теплового пробоя диэлектрика (рис. 5-20).
Аналогичный переход электрической формы пробоя в тепловую происходит в зависимости от времени выдержки твердого диэлектрика под напряжением.
Согласно выводам теории теплового пробоя твердых диэлектриков (В. А. Фок, Н. Н. Семенов) можно подсчитать величину пробивного напряжения для простых электроизоляционных конструкций (пластины) по формулам
а) для постоянного напряжения



б) для переменного напряжения



где
- функция величины,



- коэффициент теплоотдачи в окружающую среду; - коэффициент теплопроводности электродов, Дж/(с м °С); - коэффициент теплопроводности диэлектрика Дж/(с м °С); h - половина толщины диэлектрика, м; - толщина электрода, м; а - постоянная, характеризующая рост проводимости диэлектрика с температурой; - диэлектрическая проницаемость твердого диэлектрика (при температуре окружающей среды); - тангенс угла диэлектрических потерь твердого диэлектрика (при температуре окружающей среды); f - частота, Гц.
По известным значениям
вычисляют величину с и, воспользовавшись графиком (рис. 5-21), находят .
При неограниченном возрастании с величина
стремится к пределу, равному 0,66.

Рис. 5-13. Изменение электрической прочности трансформаторного масла от содержания в нем воды.

Рис. 5-14. Зависимость пробивного напряжения жидкого диэлектрика от времени воздействия на него электрического поля.

Рис. 5-15. Зависимость пробивного напряжения трансформаторного масла от расстояния между электродами.1 - плоскость против шара диаметром 125 мм; 2 - плоскость против острия.

Рис. 5-16. То же, что рис. 5-15, но для постоянного напряжения. Электроды острие - плоскость: 1 - острие отрицательное; 2 - острие положительное.

Рис. 5-17. Зависимость пробивного напряжения трансформаторного масла от давления при 50 Гц.1-невакуумированное масло; 2-вакуумированное масло.

Рис. 5-18. Зависимость пробивного напряжения твердого диэлектрика от температуры (при тепловом пробое).

Рис. 5-19. Зависимость пробивного напряжения твердого диэлектрика от длительности приложенного напряжения (при тепловом пробое).

Рис. 5-20. Зависимость пробивного напряжения от температуры для электротехнического фарфора (а - точка перехода к тепловому пробою).

Рис. 5-21. Значения функции. К расчету пробивного напряжения твердого диэлектрика при тепловом пробое (по В. А. Фоку).

Основы | Электромашины | Оборудование | Нормы | Подстанция | Электроснабжение | Освещение | Воздушная линия | Карта сайта


Назад к содержанию | Назад к главному меню