Перейти к содержанию

Главное меню:

Территория электротехнической информации WEBSOR

Найти

Проводимости

Воздушная линия > Цепи переменного тока. Теория.

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению



где
y=1/z - величина обратная полному сопротивлению, называется полной проводимостью.
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде



где
- действительная часть комплексной проводимости, называется активной проводимостью; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью;



Из ( 3.30) и ( 3.29) следует, что для схемы, представленной на рис. 3.12, комплексная проводимость



где




и называются соответственно
активной, индуктивной и емкостной проводимостями.
Реактивная проводимость



Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .

Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по рис. 3.12 на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно
При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().
Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных
L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.
Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.
Заметим, что обозначения
применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

Смотри еще по разделу на websor:


Основы | Электромашины | Оборудование | Нормы | Подстанция | Электроснабжение | Освещение | Воздушная линия | Карта сайта


Назад к содержанию | Назад к главному меню