Перейти к содержанию

Главное меню:

Территория электротехнической информации WEBSOR

Найти

Метод узловых напряжений

Основы > Задачи и ответы > Постоянный электрический ток

Метод узловых напряжений


1. Для схемы рис. 1.41, а пользуясь методом узловых напряжений, определить потенциалы узловых точек 1 и 2 (потенциал точки 3 принять равным нулю). Определив потенциалы , вычислить все токи. Дано:


Решение:
На основании (0.1.13) запишем систему уравнений для определения потенциалов точек 1 и 2:

Подсчитаем
—сумму проводимостей ветвей, присоединенных к узлу 1:



Аналогично — сумма проводимостей ветвей, присоединенных к узлу 2:



Сумма проводимостей, соединяющих первый и второй узлы,



Подставляя числовые значения в уравнения (1.1) и (1.2), получим



Решив последние два уравнения, найдем потенциалы точек 1 и 2:
.
Применяя закон Ома для отдельных ветвей, определим искомые токи:



Направления найденных токов указаны на структурной схеме (рис. 1.41, б) цепи (рис. 1.41, а).
Для упражнений рекомендуем составить самостоятельно уравнения узловых напряжений в матричной форме.

2. Методом узловых напряжений найти токи в схеме цепи (рис. 1.44,а). Дано:



Решение:
Всего в схеме четыре узла
, две ветви, содержащие только источники напряжения: ветви ЭДС . Согласно (0.1.12 б) число уравнений, составляемых по методу узловых напряжений, равно одному: .
Однако при составлении уравнений согласно формулам (0.1.13) для любого из узлов войдут слагаемые, имеющие бесконечно большую проводимость.
Покажем, как обойти указанное затруднение. Известно, что если во все ветви, примыкающие к какому-либо узлу, ввести одинаковые ЭДС, направленные к узлу (или от него), то это не окажет влияния на распределение токов в схеме, так как в уравнениях второго закона Кирхгофа для любого контура эти ЭДС взаимно компенсируются. Воспользовавшись этим свойством, введем во все ветви, примыкающие к узлу 1, ЭДС Е
' направленные к этому узлу и равные (рис. 1.44, б). Теперь окажется, что в ветви 1—3 действуют две одинаковые и противоположно направленные ЭДС, и их сумма равна нулю. Поэтому точки 1 и 3 равнопотенциальны и их можно закоротить (рис. 1.44, в). Эта схема имеет три узла и содержит одну ветвь, имеющую только ЭДС . Поэтому согласно (0.1.12 б) по методу узловых напряжений надо составить всего одно уравнение. Составим его для базисного узла 1, приняв . Тогда . Уравнение для узла 1 имеет такой вид:



Подставляя сюда числовые значения, получим
.
Найдем токи в ветвях исходной схемы по закону Ома:

Токи в ветвях с ЭДС
определим по первому закону Кирхгофа:



Для упражнения рекомендуется решить эту задачу, введя в каждую из ветвей, примыкающую к узлу 2, ЭДС Е" = Е.



Смотри полное содержание по представленным решенным задачам на websor.

Основы | Электромашины | Оборудование | Нормы | Подстанция | Электроснабжение | Освещение | Воздушная линия | Карта сайта


Назад к содержанию | Назад к главному меню